

KOLOKIUM STATISTIK DAN RESEARCH POSTER

DOSM 2018

INSTITUT LATIHAN STATISTIK MALAYSIA (ILSM)

SUNGKAI, PERAK

4 OCTOBER 2018
THURSDAY

THE POLLUTION HAVEN HYPOTHESIS AND FOREIGN DIRECT INVESTMENT IN MALAYSIA: AN ARDL APPROACH

BY:

SUHAILY BINTI SAFIE

DIVISION:

BALANCE OF PAYMENTS STATISTICS

This paper was submitted to the School of Graduate Studies, University Putra Malaysia, in fulfilment of the requirement for the Degree of Master of Economics

PRESENTATION OUTLINE

INTRODUCTION: MALAYSIA'S ECONOMY

Structure of Economy - Percentage share of GDP (%) for Malaysia

Agriculture
 Mining & Quarrying
 Manufacturing
 Construction
 Services

Source: Annual Gross Domestic Product, Department of Statistics, Malaysia (various years)

3rd largest economies

In ASEAN in 2017

33rd largest economies

In the world in 2017

23rd out of 137 countries

Global Competitiveness Report 2017/2018

6.4% average economic growth (1970-2016)

World Development Indicators

RM1.17 trillion (2017) from RM0.07 trillion (1970)

GDP (constant 2010 prices)

RM1.62 trillion (2017) from RM0.05 trillion (1970)

Total trade (constant 2010 prices)

CO₂ EMISSIONS IN MALAYSIA

CO2 emissions (metric tons per capita) for Malaysia, East Asia and Pacific and World, 1970 – 2014

Source: World Development Indicators (databank.worldbank.org)

Key Source of Greenhouse Gas Emissions – Percentage share (%) for Malaysia, 2011

Source: Malaysia Biennial Update Report to the UNFCCC 2015, Ministry Of Natural Resources and Environment Malaysia

CO₂ EMISSIONS IN MALAYSIA

CO2 emissions (metric tons per capita) and linear (CO2 metric tons per capita) for Malaysia, 1970 – 2014

Source: World Development Indicators (databank.worldbank.org)

CO2 emissions (million tons) from fuel combustion by type of fuel for Malaysia, 1971 - 2015

Source: IEA CO2 Emissions from Fuel Combustion, 2017

FDI AND URBANIZATION IN MALAYSIA

Net Foreign Direct Investment Flows in Malaysia by Sector, 2010 – 2015

Source: Statistics of Foreign Direct Investment in Malaysia 2016, Department of Statistics, Malaysia

Rural and urban population ('000) for Malaysia, 1970 – 2016

Source: World Development Indicators (databank.worldbank.org)

PROBLEM STATEMENT

WHAT

Increasing trend in CO2 emissions, despite Malaysia's commitment to the Kyoto Protocol to cut its emission intensity

01 02

04

WHY

Huge influx of FDI and increase in urbanization rate may lead to the environmental degradation

WHERE

Malaysia from year 1970 to 2014

MAGNITUDE

- CO2 emissions increased from 1.35* (1970) to 8.03* (2014)
- FDI inflow rose from US\$0.09 bil. (1970) to US\$13.5 bil. (2016)
- Urbanization expanded from 33.5% (1970) to 75.4% (2016)

-WDI, World Bank-

^{*} metric tons per capita

PROBLEM STATEMENT: RESEARCH GAP

Prior studies
examine the
relationship
between carbon
intensity and FDI
only without
focusing on
pollution haven
hypothesis

- Investigate pollution haven hypothesis in Malaysia (PHH)
- Recent data
- Extended time series

Fill the gap by providing analysis on:

- Investigate the existence of PHH in presence of inward FDI
- Examine impact of urbanization

RESEARCH OBJECTIVES

To determine the relationship between CO₂ per capita emissions and inward foreign direct investment in the long run and short run

Significance of the Study

- Study on PHH is essential for policymakers to effectively improve the environmental standards
- Policymakers may mitigate the environmental degradation by observing and choosing less pollutant FDI
- Expand further research on impact of urbanization towards CO₂ emissions

Motivation for the Study

- Generous investment incentives
 offered to foreign investment had
 resulted in large foreign
 investment inflows
- Continuous upward trend of CO₂ < emission level
- Government endlessly efforts to reduce CO₂ emissions
- Although there are quite a number of studies on PHH, there is a lack of research of this hypothesis in Malaysia

REVIEWS ON POLLUTION HAVEN HYPOTHESIS

REVIEWS ON POLLUTION HAVEN HYPOTHESIS AND URBANIZATION WITH CO₂ EMISSIONS

'The growth in emission of GHG in developing countries reaches the highest during a period when OECD strengthened their environmental regulations' **Birdsall & Wheeler (1992)**.

Mani & Wheeler (1998) found a temporary pollution haven effect in an investigation of import-export ratios for dirty industries.

'PHH occurs whenever industrialized nation transfer their polluting industries to developing countries through FDI' Copeland & Taylor (1994).

Cole (2004) observes that a pollution haven hypothesis is presence whenever differences in the degree of environmental regulations between developed and developing countries arise.

Elliott & Shimamoto (2008) finds no evidence of the presence PHH in Japanese ASEAN trading countries.

REVIEW: CO₂ EMISSION AND PHH

Positive coefficient of FDI inflow on
 CO₂ emission indicates presence of PHH

Lau et al. (2014) : Malaysia Solarin et al. (2017) : Ghana Sun et al. (2017) : China

Aliyu & Ismail (2015) : African Countries Merican et al. (2007) : ASEAN 5 countries

Chin et al. (2018) : Malaysia Hitam & Borhan (2012): Malaysia

- ► GDP on CO₂ emission; Hakimi & Hamdi (2017), Al-mulali & Tang (2013)
- Trade openness & CO₂ emission; Lau et al. (2014), Solarin et al. (2017) and Sun et al. (2017)

Negative coefficient of FDI inflow on CO₂ emission indicates PHH does not exist

Al-mulali & Tang (2013) : GCC Rafindadi et al. (2018) : GCC

Zhu et al. (2016) : ASEAN 5

Shao (2018) : 188 countries

Insignificant relationship between FDI inflow and CO₂ emission indicates PHH not exist

Ali, Abdullah & Azam (2017): Malaysia Fereidouni (2013); study on 31 emerging economies over the period 2000-2008

REVIEW: CO₂ EMISSION AND URBANIZATION 14

Financial development (net domestic credit)

Pollution-financial dev. relationship

- Jalil & Feridun (2011)
- Salahuddin et al. (2015)
- Ali et al. (2017a)
- Shahbaz et al. (2013)
- Dogan & Seker (2016)
- Tiwari & Nasir (2013)

Negative

Urban population

Impact of urbanization on CO2 emissions

- Zhang et al. (2017)
- Zhang et al. (2014)
- Kasman & Duman (2015)
- Solarin et al. (2017)
- Hossain (2011)
- Shahbaz et al. (2015)
- Farhani & Ozturk (2015)
- Dogan & Turkekul (2015)
- Shahbaz et al. (2016)

Positive

Economic growth and energy consumption

Pollution-econ. growthenergy used relationship

- Solarin et al. (2017)
- Aliyu & Ismail (2015)

Positive

Variable	Meaning	Unit				
Model 1: Po	Model 1: Pollution haven hypothesis model					
CEt	CO ₂ emissions	metric tons per capita				
GDP_t	Gross domestic product	constant 2010 US\$ per capita				
FDI _t	Foreign direct investment inflow	% of GDP				
TRADEt	Sum of imports and exports of goods and services	% of GDP				
Model 2: Urk	panization model					
CEt	CO ₂ emissions	metric tons per capita				
GDP _t	Gross domestic product	constant 2010 US\$ per capita				
EU_t	Energy use	kg of oil equivalent per capita				
UR _t	Urban population	% of growth				
NDC_t	Net domestic credit	% of GDP				

THEORETICAL FRAMEWORK

MODEL SPECIFICATION: ARDL MODEL

Model 1 Pollution Haven Hypothesis

Equation 1: Basic form

 $CE_t = f(GDP_t, FDI_t, TRADE_t, \varepsilon_t)$

Equation 3: Regression form

 $CE_t = \beta_0 + \beta_1 GDP_t + \beta_2 FDI_t + \beta_3 TRADE_t + \varepsilon_t$

Equation 5: Log linear form

 $InCE_t = \beta_0 + \beta_1 InGDP_t + \beta_2 InFDI_t + \beta_3 InTRADE_t + \varepsilon_t$

Equation 7: ARDL

$$\begin{split} \Delta lnCE_t &= \alpha_0 + \sum_{i=1}^f \theta_{1i} \Delta lnCE_{t-i} + \sum_{i=0}^f \theta_{2i} \Delta lnGDP_{t-i} \\ &+ \sum_{i=0}^f \theta_{3i} \Delta lnFDI_{t-i} + \sum_{i=0}^f \theta_{4i} \Delta lnTRADE_{t-i} \\ &+ \beta_{1CE} lnCE_{t-1} + \beta_{2CE} lnGDP_{t-1} + \beta_{3CE} lnFDI_{t-1} \\ &+ \beta_{4CE} lnTRADE_{t-1} + \varepsilon_{1t} \end{split}$$

Expectation:

GDP : +
FDI Inflow : +/Trade openness : +

Model 2 Urbanization

Equation 2: Basic form

 $CE_t = f(GDP_t, EU_t, UR_t, NDC_t, \varepsilon_t)$

Equation 4: Regression form

 $CE_t = \delta_0 + \delta_1 GDP_t + \delta_2 EU_t + \delta_3 UR_t + \delta_4 NDC_t + \epsilon_t$

Equation 6: Log linear form

 $InCE_t = \delta_0 + \delta_1 InGDP_t + \delta_2 InEU_t + \delta_3 InUR_t + \delta_4 InNDC_t + \epsilon_t$

Equation 8: ARDL

$$\begin{split} \Delta lnCE_{t} &= \gamma_{0} + \sum_{i=1}^{f} \pi_{1i} \, \Delta lnCE_{t-i} \, + \sum_{i=0}^{f} \pi_{2i} \, \Delta lnGDP_{t-i} \\ &+ \sum_{i=0}^{f} \pi_{3i} \, \Delta lnEU_{t-i} \, + \sum_{i=0}^{f} \pi_{4i} \, \Delta lnUR_{t-i} \\ &+ \sum_{i=0}^{f} \pi_{5i} \, \Delta lnNDC_{t-i} \, + \, \delta_{1CE} lnCE_{t-1} \\ &+ \delta_{2CE} lnGDP_{t-1} + \delta_{3CE} lnEU_{t-1} + \delta_{4CE} lnUR_{t-1} \\ &+ \delta_{5CE} lnNDC_{t-1} + \varepsilon_{2t} \end{split}$$

Expectation:

GDP : + Urban population : +/Energy used : + Net domestic credit : +/-

MODEL PROCEDURE

Descriptive Statistics

Identify characteristics of PHH and urbanization models

Unit Root Test

Augmented Dickey-Fuller (ADF) test Phillips-Perron test

ARDL & Cointegration test

Bound test – Long run relationship Error Correction test – Short run relationship

Diagnostic Test

Residual Test: Normality, Autocorrelation, Heteroscedasticity **Stability Test**: Ramsey RESET test, CUSUM and CUSUM SQ

Robustness Check

Fully Modified Ordinary Least Squares (FMOLS)

Dynamic Ordinary Least Squares (DOLS)

Variable	CO ₂	GDP per capita	FDI net inflows	TRADE	Energy use	Urban popula- tion	Net domestic credit
Unit	metric tons per capita	constant 2010 US\$	% of GDP	% of GDP	kg of oil equivalent per capita	% of growth	% of GDP
Mean	4.259	5539.573	3.916	144.689	1,585.758	4.153	105.138
Median	3.960	5131.831	3.602	146.888	1,562.131	4.498	114.612
Maximum	8.033	10398.230	8.136	220.407	2,967.541	4.993	163.355
Minimum	1.352	1993.450	1.313	73.668	523.574	2.725	24.116
Std. Dev.	2.285	2524.999	1.552	44.922	802.743	0.719	38.820
Skewness	0.235	0.299	0.870	0.114	0.226	-0.710	-0.621
Kurtosis	1.519	1.792	3.556	1.659	1.629	1.936	2.242
Jarque-Bera	4.526	3.406	6.252	3.470	3.909	5.902	3.973
Probability	0.104	0.182	0.044	0.176	0.142	0.052	0.137
Observations	45	45	45	45	45	45	45

Descriptive Statistics

Correlation Matrix

	CE_t	GDP_t	FDI_t	$TRADE_t$	EU_t	UR_t	NDC _t
CEt	1						_
GDP_t	0.989	1					
FDI_t	0.167	0.144	1				
$TRADE_{t}$	0.773	0.749	0.312	1			
EU_t	0.987	0.993	0.139	0.780	1		
UR_t	-0.774	-0.812	0.120	-0.401	-0.814	1	
NDC _t	0.697	0.714	0.068	0.747	0.717	-0.390	1

Test/	Le	Level		ifference	Order of	
Variable	Constant	Constant	Constant	Constant	integration	
		and Trend		and Trend		
	Augmented Dicky-Fuller (ADF)					
$InCE_t$	-1.003	-2.041	-8.042***	-7.987***	I(1)	
$InGDP_t$	-1.512	-2.047	-5.667***	-5.815***	I(1)	
$InFDI_{t}$	-3.027**	-2.965	-7.007***	-6.961***	I(1)	
$InTRADE_{t}$	-1.874	-0.369	-4.961***	-5.455***	I(1)	
$InEU_t$	-0.876	-1.902	-6.901***	-6.917***	I(1)	
$InUR_t$	0.813	-1.077	-5.125***	-5.318***	I(1)	
$InNDC_t$	-3.031**	-2.482	-5.667***	-5.749***	I(1)	
		Phillips-P	erron (PP)			
InCE _t	-1.003	-2.037	-7.985***	-7.977***	I(1)	
$InGDP_t$	-1.512	-2.123	-5.677***	-5.815***	I(1)	
$InFDI_{t}$	-3.027**	-2.965	-7.009***	-6.965***	I(1)	
$InTRADE_t$	-1.425	0.105	-4.961***	-5.419***	I(1)	
$InEU_t$	-0.999	-1.902	-7.085***	-8.463***	I(1)	
$InUR_t$	0.500	-1.265	-5.119***	-5.318***	I(1)	
InNDC _t	-3.177**	-2.463	-5.677***	-5.982***	I(1)	

Notes: *** and ** indicate significance at 1% and 5% level

Long-run Analysis

Dependent variable = $InCE_t$						
Independent Variable	Model 1	Model 2				
Long-run coefficients						
InGDP _t	1.082***	0.871***				
	[11.346]	[2.848]				
$InFDI_t$	0.088					
	[1.239]					
$InTRADE_t$	0.161					
	[1.105]					
$InEU_t$		0.557**				
		[2.100]				
$InUR_t$		0.461***				
		[3.327]				
$InNDC_t$		-0.235***				
		[-3.649]				
Constant	-3.815***	-4.212***				
	[-20.881]	[-10.246]				
R_2	0.986	0.990				
Adj. R ₂	0.985	0.988				
F-statistic	690.899***	731.393***				

ARDL Bound Test Results

Test Statistic	Model 1		Model 2	
F-statistic	6.536		9.417	
k	3		4	
Significance	I(0) Bound	I(1) Bound	I(0) Bound	I(1) Bound
10%	2.37	3.20	2.20	3.09
5%	2.79	3.67	2.56	3.49
2.5%	3.15	4.08	2.88	3.87
1%	3.65	4.66	3.29	4.37

ARDL Error Correction Regression Results

Model	Variable	Coefficient	Std. Error	t-Statistic	Prob.
Model 1	CointEq(-1)*	-0.486	0.081	-6.003	0.000
Model 2	CointEq(-1)*	-0.649	0.081	-7.996	0.000

^{***, **} and * indicate significance at 1%, 5% and 10% levels respectively. [] is the t-statistics

Diagnostic Test	Null hypothesis	Model 1	Model 2
Jarque-Bera	H ₀ : Residuals are normally distributed	$\chi^2 = 0.594$ [0.743]	$\chi^2 = 2.874$ [0.238]
Breusch-Godfrey Serial Correlation LM Test	H ₀ : No serial correlation in residuals	$\chi^2 = 0.587$ [0.746]	$\chi^2 = 0.053$ [0.974]
Breusch-Pagan-Godfrey	H ₀ : Homoscedasticity (constant variance)	$\chi^2 = 3.602$ [0.463]	$\chi^2 = 5.013$ [0.414]
Ramsey RESET	H ₀ : Model specification is correct	T-stat= 1.830 [0.075]	T-stat= 1.295 [0.203]

Diagnostic Test Results

- p-value of Jarque-Bera > 0.05. Thus, errors are normally distributed
- No serial correlations in residuals and variance is constant as p-value > 0.05
- Model specifications are well specified as p-value of Ramsey RESET > 0.05

Note: Figures in parentheses [] represent probability values of the test statistics.

Plot of CUSUM and CUSUM Square Test

Model 1 Model 2

Dependent variable = InCE _t					
Independent	FMOLS		DOLS		
Variable	Model 1	Model 2	Model 1	Model 2	
InGDP _t	1.064***	1.075***	1.095***	1.402***	
	[14.523]	[5.252]	[12.380]	[4.024]	
$InFDI_t$	0.044		0.045		
	[0.890]		[0.691]		
$InTRADE_{t}$	0.219*		0.229*		
	[1.917]		[1.890]		
$InEU_t$		0.379**		0.105	
		[2.313]		[0.342]	
$InUR_t$		0.499***		0.502***	
		[5.091]		[4.114]	
$InNDC_t$		-0.222***		-0.179**	
		[-5.025]		[-2.542]	
Constant	-3.870***	-4.524***	-4.029***	-4.907***	
	[-27.989]	[-15.605]	[-25.742]	[-11.874]	
R_2	0.980	0.987	0.988	0.993	
Adj. R ₂	0.978	0.986	0.982	0.988	

Notes: ***, ** and * indicate significance at 1%, 5% and 10% levels respectively. [] is the t-statistics.

Long-run analysis for the **Pollution Haven Hypothesis model**

$$InCE_t = -3.815 + 1.082InGDP_t + 0.088InFDI_t + 0.161InTRADE_t$$

= $(-21.153)^{***}$ (11.062)*** (0.651) (1.465)

Notes: *** and ** indicate significance at 1% and 5% levels respectively. [] is the t-statistics

Significant and **positive** impact

Economic growth increases pollution

Hakimi & Hamdi (2017) Al-mulali & Tang (2013) Positive but not significant

Rise in FDI inflow does not lead to increase inCO₂ emission. PHH does not exist.

Ali et al. (2017) Fereidouni (2013) Positive but not significant

The insignificant values indicate that country* is not adequately open to trade.

Ahmed (2014)

GDP

FDI

TRADE

Long-run analysis for the **Urbanization model**

$$InCE_t = -4.212 + 0.871InGDP_t + 0.557InEU_t + 0.461InURt - 0.235InNDC_t$$

= $(-10.246)^{***}$ (2.848)*** (2.100)** (3.327)*** (-3.649)***

Notes: *** and ** indicate significance at 1% and 5% levels respectively. [] is the t-statistics

Economic growth increases pollution

Solarin et al. (2017) Sun et al. (2017)

Positive and significant

Key drivers of CO₂ emission in Malaysia are economic growth and energy consumption

Sulaiman & Abdul-Rahim (2017)

Positive and significant

Lowering urbanization growth could be an option to meet an environmental target of 40% CO₂ reduction by 2020

Bekhet & Othman (2017)

Negative and significant

Financial development has not taken place at the cost of pollution

Jalil & Feridun (2011)

GDP EU

UR

NDC

DISCUSSION & POLICY IMPLICATIONS

Welcoming 62nd ISI WORLD STATISTICS CONGRESS 2019

18 - 23 AUGUST 2019 ■ KUALA LUMPUR

THANK YOU

BANCI PENDUDUK DAN 2020 PERUMAHAN MALAYSIA

Data Anda Masa Depan Kita